Feature Group Tabular Transformer: A Novel Approach to Traffic Crash Modeling and Causality Analysis

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2412.06825v1 Announce Type: new
Abstract: Reliable and interpretable traffic crash modeling is essential for understanding causality and improving road safety. This study introduces a novel approach to predicting collision types by utilizing a comprehensive dataset fused from multiple sources, including weather data, crash reports, high-resolution traffic information, pavement geometry, and facility characteristics. Central to our approach is the development of a Feature Group Tabular Transformer (FGTT) model, which organizes disparate data into meaningful feature groups, represented as tokens. These group-based tokens serve as rich semantic components, enabling effective identification of collision patterns and interpretation of causal mechanisms. The FGTT model is benchmarked against widely used tree ensemble models, including Random Forest, XGBoost, and CatBoost, demonstrating superior predictive performance. Furthermore, model interpretation reveals key influential factors, providing fresh insights into the underlying causality of distinct crash types.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.