Nonlinear Operator Learning Using Energy Minimization and MLPs

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2412.04596v1 Announce Type: new
Abstract: We develop and evaluate a method for learning solution operators to nonlinear problems governed by partial differential equations. The approach is based on a finite element discretization and aims at representing the solution operator by an MLP that takes latent variables as input. The latent variables will typically correspond to parameters in a parametrization of input data such as boundary conditions, coefficients, and right-hand sides. The loss function is most often an energy functional and we formulate efficient parallelizable training algorithms based on assembling the energy locally on each element. For large problems, the learning process can be made more efficient by using only a small fraction of randomly chosen elements in the mesh in each iteration. The approach is evaluated on several relevant test cases, where learning the solution operator turns out to be beneficial compared to classical numerical methods.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.