arXiv:2412.02279v1 Announce Type: new
Abstract: Recently, Large Language Models (LLMs) have garnered increasing attention in the field of natural language processing, revolutionizing numerous downstream tasks with powerful reasoning and generation abilities. For example, In-Context Learning (ICL) introduces a fine-tuning-free paradigm, allowing out-of-the-box LLMs to execute downstream tasks by analogy learning without any fine-tuning. Besides, in a fine-tuning-dependent paradigm where substantial training data exists, Parameter-Efficient Fine-Tuning (PEFT), as the cost-effective methods, enable LLMs to achieve excellent performance comparable to full fine-tuning.
However, these fascinating techniques employed by LLMs have not been fully exploited in the ABSA field. Previous works probe LLMs in ABSA by merely using randomly selected input-output pairs as demonstrations in ICL, resulting in an incomplete and superficial evaluation. In this paper, we shed light on a comprehensive evaluation of LLMs in the ABSA field, involving 13 datasets, 8 ABSA subtasks, and 6 LLMs. Specifically, we design a unified task formulation to unify “multiple LLMs for multiple ABSA subtasks in multiple paradigms.” For the fine-tuning-dependent paradigm, we efficiently fine-tune LLMs using instruction-based multi-task learning. For the fine-tuning-free paradigm, we propose 3 demonstration selection strategies to stimulate the few-shot abilities of LLMs. Our extensive experiments demonstrate that LLMs achieve a new state-of-the-art performance compared to fine-tuned Small Language Models (SLMs) in the fine-tuning-dependent paradigm. More importantly, in the fine-tuning-free paradigm where SLMs are ineffective, LLMs with ICL still showcase impressive potential and even compete with fine-tuned SLMs on some ABSA subtasks.
Source link
lol