Efficient Concertormer for Image Deblurring and Beyond

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning


View a PDF of the paper titled Efficient Concertormer for Image Deblurring and Beyond, by Pin-Hung Kuo and 3 other authors

View PDF
HTML (experimental)

Abstract:The Transformer architecture has achieved remarkable success in natural language processing and high-level vision tasks over the past few years. However, the inherent complexity of self-attention is quadratic to the size of the image, leading to unaffordable computational costs for high-resolution vision tasks. In this paper, we introduce Concertormer, featuring a novel Concerto Self-Attention (CSA) mechanism designed for image deblurring. The proposed CSA divides self-attention into two distinct components: one emphasizes generally global and another concentrates on specifically local correspondence. By retaining partial information in additional dimensions independent from the self-attention calculations, our method effectively captures global contextual representations with complexity linear to the image size. To effectively leverage the additional dimensions, we present a Cross-Dimensional Communication module, which linearly combines attention maps and thus enhances expressiveness. Moreover, we amalgamate the two-staged Transformer design into a single stage using the proposed gated-dconv MLP architecture. While our primary objective is single-image motion deblurring, extensive quantitative and qualitative evaluations demonstrate that our approach performs favorably against the state-of-the-art methods in other tasks, such as deraining and deblurring with JPEG artifacts. The source codes and trained models will be made available to the public.

Submission history

From: Pin-Hung Kuo [view email]
[v1]
Tue, 9 Apr 2024 09:02:21 UTC (49,137 KB)
[v2]
Tue, 3 Dec 2024 12:03:40 UTC (11,744 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.