Tag and correct: high precision post-editing approach to correction of speech recognition errors

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2406.07589v1 Announce Type: new
Abstract: This paper presents a new approach to the problem of correcting speech recognition errors by means of post-editing. It consists of using a neural sequence tagger that learns how to correct an ASR (Automatic Speech Recognition) hypothesis word by word and a corrector module that applies corrections returned by the tagger. The proposed solution is applicable to any ASR system, regardless of its architecture, and provides high-precision control over errors being corrected. This is especially crucial in production environments, where avoiding the introduction of new mistakes by the error correction model may be more important than the net gain in overall results. The results show that the performance of the proposed error correction models is comparable with previous approaches while requiring much smaller resources to train, which makes it suitable for industrial applications, where both inference latency and training times are critical factors that limit the use of other techniques.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.