arXiv:2412.00068v1 Announce Type: new
Abstract: Objective: This study explores a semi-supervised learning (SSL), pseudo-labeled strategy using diverse datasets to enhance lung cancer (LCa) survival predictions, analyzing Handcrafted and Deep Radiomic Features (HRF/DRF) from PET/CT scans with Hybrid Machine Learning Systems (HMLS). Methods: We collected 199 LCa patients with both PET & CT images, obtained from The Cancer Imaging Archive (TCIA) and our local database, alongside 408 head&neck cancer (HNCa) PET/CT images from TCIA. We extracted 215 HRFs and 1024 DRFs by PySERA and a 3D-Autoencoder, respectively, within the ViSERA software, from segmented primary tumors. The supervised strategy (SL) employed a HMLSs: PCA connected with 4 classifiers on both HRF and DRFs. SSL strategy expanded the datasets by adding 408 pseudo-labeled HNCa cases (labeled by Random Forest algorithm) to 199 LCa cases, using the same HMLSs techniques. Furthermore, Principal Component Analysis (PCA) linked with 4 survival prediction algorithms were utilized in survival hazard ratio analysis. Results: SSL strategy outperformed SL method (p-value<0.05), achieving an average accuracy of 0.85 with DRFs from PET and PCA+ Multi-Layer Perceptron (MLP), compared to 0.65 for SL strategy using DRFs from CT and PCA+ K-Nearest Neighbor (KNN). Additionally, PCA linked with Component-wise Gradient Boosting Survival Analysis on both HRFs and DRFs, as extracted from CT, had an average c-index of 0.80 with a Log Rank p-value<<0.001, confirmed by external testing. Conclusions: Shifting from HRFs and SL to DRFs and SSL strategies, particularly in contexts with limited data points, enabling CT or PET alone to significantly achieve high predictive performance.
Source link
lol