LocRef-Diffusion:Tuning-Free Layout and Appearance-Guided Generation

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2411.15252v1 Announce Type: new
Abstract: Recently, text-to-image models based on diffusion have achieved remarkable success in generating high-quality images. However, the challenge of personalized, controllable generation of instances within these images remains an area in need of further development. In this paper, we present LocRef-Diffusion, a novel, tuning-free model capable of personalized customization of multiple instances’ appearance and position within an image. To enhance the precision of instance placement, we introduce a Layout-net, which controls instance generation locations by leveraging both explicit instance layout information and an instance region cross-attention module. To improve the appearance fidelity to reference images, we employ an appearance-net that extracts instance appearance features and integrates them into the diffusion model through cross-attention mechanisms. We conducted extensive experiments on the COCO and OpenImages datasets, and the results demonstrate that our proposed method achieves state-of-the-art performance in layout and appearance guided generation.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.