Uni-Mlip: Unified Self-supervision for Medical Vision Language Pre-training

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2411.15207v1 Announce Type: new
Abstract: Recent advancements in vision-language pre-training via contrastive learning have significantly improved performance across computer vision tasks. However, in the medical domain, obtaining multimodal data is often costly and challenging due to privacy, sensitivity, and annotation complexity. To mitigate data scarcity while boosting model performance, we introduce textbf{Uni-Mlip}, a unified self-supervision framework specifically designed to enhance medical vision-language pre-training. Uni-Mlip seamlessly integrates cross-modality, uni-modality, and fused-modality self-supervision techniques at the data-level and the feature-level. Additionally, Uni-Mlip tailors uni-modal image self-supervision to accommodate the unique characteristics of medical images. Our experiments across datasets of varying scales demonstrate that Uni-Mlip significantly surpasses current state-of-the-art methods in three key downstream tasks: image-text retrieval, image classification, and visual question answering (VQA).



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.