Efficient Spatio-Temporal Signal Recognition on Edge Devices Using PointLCA-Net

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning


[Submitted on 21 Nov 2024]

View a PDF of the paper titled Efficient Spatio-Temporal Signal Recognition on Edge Devices Using PointLCA-Net, by Sanaz Mahmoodi Takaghaj and 1 other authors

View PDF
HTML (experimental)

Abstract:Recent advancements in machine learning, particularly through deep learning architectures like PointNet, have transformed the processing of three-dimensional (3D) point clouds, significantly improving 3D object classification and segmentation tasks. While 3D point clouds provide detailed spatial information, spatio-temporal signals introduce a dynamic element that accounts for changes over time. However, applying deep learning techniques to spatio-temporal signals and deploying them on edge devices presents challenges, including real-time processing, memory capacity, and power consumption. To address these issues, this paper presents a novel approach that combines PointNet’s feature extraction with the in-memory computing capabilities and energy efficiency of neuromorphic systems for spatio-temporal signal recognition. The proposed method consists of a two-stage process: in the first stage, PointNet extracts features from the spatio-temporal signals, which are then stored in non-volatile memristor crossbar arrays. In the second stage, these features are processed by a single-layer spiking neural encoder-decoder that employs the Locally Competitive Algorithm (LCA) for efficient encoding and classification. This work integrates the strengths of both PointNet and LCA, enhancing computational efficiency and energy performance on edge devices. PointLCA-Net achieves high recognition accuracy for spatio-temporal data with substantially lower energy burden during both inference and training than comparable approaches, thus advancing the deployment of advanced neural architectures in energy-constrained environments.

Submission history

From: Sanaz Mahmoodi Takaghaj [view email]
[v1]
Thu, 21 Nov 2024 20:48:40 UTC (1,718 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.