Retrieval-Augmented Generation for Domain-Specific Question Answering: A Case Study on Pittsburgh and CMU

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2411.13691v1 Announce Type: new
Abstract: We designed a Retrieval-Augmented Generation (RAG) system to provide large language models with relevant documents for answering domain-specific questions about Pittsburgh and Carnegie Mellon University (CMU). We extracted over 1,800 subpages using a greedy scraping strategy and employed a hybrid annotation process, combining manual and Mistral-generated question-answer pairs, achieving an inter-annotator agreement (IAA) score of 0.7625. Our RAG framework integrates BM25 and FAISS retrievers, enhanced with a reranker for improved document retrieval accuracy. Experimental results show that the RAG system significantly outperforms a non-RAG baseline, particularly in time-sensitive and complex queries, with an F1 score improvement from 5.45% to 42.21% and recall of 56.18%. This study demonstrates the potential of RAG systems in enhancing answer precision and relevance, while identifying areas for further optimization in document retrieval and model training.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.