Adaptive Process-Guided Learning: An Application in Predicting Lake DO Concentrations

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2411.12973v1 Announce Type: new
Abstract: This paper introduces a textit{Process-Guided Learning (Pril)} framework that integrates physical models with recurrent neural networks (RNNs) to enhance the prediction of dissolved oxygen (DO) concentrations in lakes, which is crucial for sustaining water quality and ecosystem health. Unlike traditional RNNs, which may deliver high accuracy but often lack physical consistency and broad applicability, the textit{Pril} method incorporates differential DO equations for each lake layer, modeling it as a first-order linear solution using a forward Euler scheme with a daily timestep. However, this method is sensitive to numerical instabilities. When drastic fluctuations occur, the numerical integration is neither mass-conservative nor stable. Especially during stratified conditions, exogenous fluxes into each layer cause significant within-day changes in DO concentrations. To address this challenge, we further propose an textit{Adaptive Process-Guided Learning (April)} model, which dynamically adjusts timesteps from daily to sub-daily intervals with the aim of mitigating the discrepancies caused by variations in entrainment fluxes. textit{April} uses a generator-discriminator architecture to identify days with significant DO fluctuations and employs a multi-step Euler scheme with sub-daily timesteps to effectively manage these variations. We have tested our methods on a wide range of lakes in the Midwestern USA, and demonstrated robust capability in predicting DO concentrations even with limited training data. While primarily focused on aquatic ecosystems, this approach is broadly applicable to diverse scientific and engineering disciplines that utilize process-based models, such as power engineering, climate science, and biomedicine.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.