DexRay: A Simple, yet Effective Deep Learning Approach to Android Malware Detection based on Image Representation of Bytecode

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning


View a PDF of the paper titled DexRay: A Simple, yet Effective Deep Learning Approach to Android Malware Detection based on Image Representation of Bytecode, by Nadia Daoudi and 5 other authors

View PDF
HTML (experimental)

Abstract:Computer vision has witnessed several advances in recent years, with unprecedented performance provided by deep representation learning research. Image formats thus appear attractive to other fields such as malware detection, where deep learning on images alleviates the need for comprehensively hand-crafted features generalising to different malware variants. We postulate that this research direction could become the next frontier in Android malware detection, and therefore requires a clear roadmap to ensure that new approaches indeed bring novel contributions. We contribute with a first building block by developing and assessing a baseline pipeline for image-based malware detection with straightforward steps. We propose DexRay, which converts the bytecode of the app DEX files into grey-scale “vector” images and feeds them to a 1-dimensional Convolutional Neural Network model. We view DexRay as foundational due to the exceedingly basic nature of the design choices, allowing to infer what could be a minimal performance that can be obtained with image-based learning in malware detection. The performance of DexRay evaluated on over 158k apps demonstrates that, while simple, our approach is effective with a high detection rate (F1-score= 0.96). Finally, we investigate the impact of time decay and image-resizing on the performance of DexRay and assess its resilience to obfuscation. This work-in-progress paper contributes to the domain of Deep Learning based Malware detection by providing a sound, simple, yet effective approach (with available artefacts) that can be the basis to scope the many profound questions that will need to be investigated to fully develop this domain.

Submission history

From: Nadia Daoudi Ms [view email]
[v1]
Sun, 5 Sep 2021 16:33:05 UTC (3,062 KB)
[v2]
Wed, 20 Nov 2024 10:31:37 UTC (9,040 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.