View a PDF of the paper titled A Survey of Graph Unlearning, by Anwar Said and Yuying Zhao and Tyler Derr and Mudassir Shabbir and Waseem Abbas and Xenofon Koutsoukos
Abstract:Graph unlearning emerges as a crucial advancement in the pursuit of responsible AI, providing the means to remove sensitive data traces from trained models, thereby upholding the right to be forgotten. It is evident that graph machine learning exhibits sensitivity to data privacy and adversarial attacks, necessitating the application of graph unlearning techniques to address these concerns effectively. In this comprehensive survey paper, we present the first systematic review of graph unlearning approaches, encompassing a diverse array of methodologies and offering a detailed taxonomy and up-to-date literature overview to facilitate the understanding of researchers new to this field. To ensure clarity, we provide lucid explanations of the fundamental concepts and evaluation measures used in graph unlearning, catering to a broader audience with varying levels of expertise. Delving into potential applications, we explore the versatility of graph unlearning across various domains, including but not limited to social networks, adversarial settings, recommender systems, and resource-constrained environments like the Internet of Things, illustrating its potential impact in safeguarding data privacy and enhancing AI systems’ robustness. Finally, we shed light on promising research directions, encouraging further progress and innovation within the domain of graph unlearning. By laying a solid foundation and fostering continued progress, this survey seeks to inspire researchers to further advance the field of graph unlearning, thereby instilling confidence in the ethical growth of AI systems and reinforcing the responsible application of machine learning techniques in various domains.
Submission history
From: Anwar Said [view email]
[v1]
Wed, 23 Aug 2023 20:50:52 UTC (5,034 KB)
[v2]
Sat, 7 Oct 2023 19:50:17 UTC (5,034 KB)
[v3]
Sat, 16 Nov 2024 20:51:30 UTC (7,169 KB)
Source link
lol