CLaSP: Learning Concepts for Time-Series Signals from Natural Language Supervision

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2411.08397v1 Announce Type: new
Abstract: This paper proposes a foundation model called “CLaSP” that can search time series signals using natural language that describes the characteristics of the signals as queries. Previous efforts to represent time series signal data in natural language have had challenges in designing a conventional class of time series signal characteristics, formulating their quantification, and creating a dictionary of synonyms. To overcome these limitations, the proposed method introduces a neural network based on contrastive learning. This network is first trained using the datasets TRUCE and SUSHI, which consist of time series signals and their corresponding natural language descriptions. Previous studies have proposed vocabularies that data analysts use to describe signal characteristics, and SUSHI was designed to cover these terms. We believe that a neural network trained on these datasets will enable data analysts to search using natural language vocabulary. Furthermore, our method does not require a dictionary of predefined synonyms, and it leverages common sense knowledge embedded in a large-scale language model (LLM). Experimental results demonstrate that CLaSP enables natural language search of time series signal data and can accurately learn the points at which signal data changes.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.