Watermarking Language Models through Language Models

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2411.05091v1 Announce Type: new
Abstract: This paper presents a novel framework for watermarking language models through prompts generated by language models. The proposed approach utilizes a multi-model setup, incorporating a Prompting language model to generate watermarking instructions, a Marking language model to embed watermarks within generated content, and a Detecting language model to verify the presence of these watermarks. Experiments are conducted using ChatGPT and Mistral as the Prompting and Marking language models, with detection accuracy evaluated using a pretrained classifier model. Results demonstrate that the proposed framework achieves high classification accuracy across various configurations, with 95% accuracy for ChatGPT, 88.79% for Mistral. These findings validate the and adaptability of the proposed watermarking strategy across different language model architectures. Hence the proposed framework holds promise for applications in content attribution, copyright protection, and model authentication.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.