View a PDF of the paper titled Comparing Neighbors Together Makes it Easy: Jointly Comparing Multiple Candidates for Efficient and Effective Retrieval, by Jonghyun Song and 4 other authors
Abstract:A common retrieve-and-rerank paradigm involves retrieving relevant candidates from a broad set using a fast bi-encoder (BE), followed by applying expensive but accurate cross-encoders (CE) to a limited candidate set. However, relying on this small subset is often susceptible to error propagation from the bi-encoders, which limits the overall performance. To address these issues, we propose the Comparing Multiple Candidates (CMC) framework. CMC compares a query and multiple embeddings of similar candidates (i.e., neighbors) through shallow self-attention layers, delivering rich representations contextualized to each other. Furthermore, CMC is scalable enough to handle multiple comparisons simultaneously. For example, comparing ~10K candidates with CMC takes a similar amount of time as comparing 16 candidates with CE. Experimental results on the ZeSHEL dataset demonstrate that CMC, when plugged in between bi-encoders and cross-encoders as a seamless intermediate reranker (BE-CMC-CE), can effectively improve recall@k (+4.8%-p, +3.5%-p for R@16, R@64) compared to using only bi-encoders (BE-CE), with negligible slowdown (<7%). Additionally, to verify CMC’s effectiveness as the final-stage reranker in improving top-1 accuracy, we conduct experiments on downstream tasks such as entity, passage, and dialogue ranking. The results indicate that CMC is not only faster (11x) but also often more effective than CE, with improved prediction accuracy in Wikipedia entity linking (+0.7%-p) and DSTC7 dialogue ranking (+3.3%-p).
Submission history
From: Jonghyun Song [view email]
[v1]
Tue, 21 May 2024 13:51:48 UTC (3,221 KB)
[v2]
Fri, 25 Oct 2024 01:45:44 UTC (3,876 KB)
Source link
lol