Advancing Super-Resolution in Neural Radiance Fields via Variational Diffusion Strategies

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2410.18137v1 Announce Type: new
Abstract: We present a novel method for diffusion-guided frameworks for view-consistent super-resolution (SR) in neural rendering. Our approach leverages existing 2D SR models in conjunction with advanced techniques such as Variational Score Distilling (VSD) and a LoRA fine-tuning helper, with spatial training to significantly boost the quality and consistency of upscaled 2D images compared to the previous methods in the literature, such as Renoised Score Distillation (RSD) proposed in DiSR-NeRF (1), or SDS proposed in DreamFusion. The VSD score facilitates precise fine-tuning of SR models, resulting in high-quality, view-consistent images. To address the common challenge of inconsistencies among independent SR 2D images, we integrate Iterative 3D Synchronization (I3DS) from the DiSR-NeRF framework. Our quantitative benchmarks and qualitative results on the LLFF dataset demonstrate the superior performance of our system compared to existing methods such as DiSR-NeRF.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.