Neural machine translation of clinical procedure codes for medical diagnosis and uncertainty quantification

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning


View a PDF of the paper titled Neural machine translation of clinical procedure codes for medical diagnosis and uncertainty quantification, by Pei-Hung Chung and 4 other authors

View PDF
HTML (experimental)

Abstract:A Clinical Decision Support System (CDSS) is designed to enhance clinician decision-making by combining system-generated recommendations with medical expertise. Given the high costs, intensive labor, and time-sensitive nature of medical treatments, there is a pressing need for efficient decision support, especially in complex emergency scenarios. In these scenarios, where information can be limited, an advanced CDSS framework that leverages AI (artificial intelligence) models to effectively reduce diagnostic uncertainty has utility. Such an AI-enabled CDSS framework with quantified uncertainty promises to be practical and beneficial in the demanding context of real-world medical care. In this study, we introduce the concept of Medical Entropy, quantifying uncertainties in patient outcomes predicted by neural machine translation based on the ICD-9 code of procedures. Our experimental results not only show strong correlations between procedure and diagnosis sequences based on the simple ICD-9 code but also demonstrate the promising capacity to model trends of uncertainties during hospitalizations through a data-driven approach.

Submission history

From: Pei-Hung Chung [view email]
[v1]
Wed, 7 Feb 2024 20:11:56 UTC (1,143 KB)
[v2]
Sat, 19 Oct 2024 06:35:25 UTC (604 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.