arXiv:2406.03642v1 Announce Type: new
Abstract: Aligning pretrained language models (LMs) is a complex and resource-intensive process, often requiring access to large amounts of ground-truth preference data and substantial compute. Are these costs necessary? That is, it is possible to align using only inherent model knowledge and without additional training? We tackle this challenge with AlignEZ, a novel approach that uses (1) self-generated preference data and (2) representation editing to provide nearly cost-free alignment. During inference, AlignEZ modifies LM representations to reduce undesirable and boost desirable components using subspaces identified via self-generated preference pairs. Our experiments reveal that this nearly cost-free procedure significantly narrows the gap between base pretrained and tuned models by an average of 31.6%, observed across six datasets and three model architectures. Additionally, we explore the potential of using AlignEZ as a means of expediting more expensive alignment procedures. Our experiments show that AlignEZ improves DPO models tuned only using a small subset of ground-truth preference data. Lastly, we study the conditions under which improvement using AlignEZ is feasible, providing valuable insights into its effectiveness.
Source link
lol