Large Language Models for Propaganda Span Annotation

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning


View a PDF of the paper titled Large Language Models for Propaganda Span Annotation, by Maram Hasanain and 2 other authors

View PDF
HTML (experimental)

Abstract:The use of propagandistic techniques in online content has increased in recent years aiming to manipulate online audiences. Fine-grained propaganda detection and extraction of textual spans where propaganda techniques are used, are essential for more informed content consumption. Automatic systems targeting the task over lower resourced languages are limited, usually obstructed by lack of large scale training datasets. Our study investigates whether Large Language Models (LLMs), such as GPT-4, can effectively extract propagandistic spans. We further study the potential of employing the model to collect more cost-effective annotations. Finally, we examine the effectiveness of labels provided by GPT-4 in training smaller language models for the task. The experiments are performed over a large-scale in-house manually annotated dataset. The results suggest that providing more annotation context to GPT-4 within prompts improves its performance compared to human annotators. Moreover, when serving as an expert annotator (consolidator), the model provides labels that have higher agreement with expert annotators, and lead to specialized models that achieve state-of-the-art over an unseen Arabic testing set. Finally, our work is the first to show the potential of utilizing LLMs to develop annotated datasets for propagandistic spans detection task prompting it with annotations from human annotators with limited expertise. All scripts and annotations will be shared with the community.

Submission history

From: Maram Hasanain [view email]
[v1]
Thu, 16 Nov 2023 11:37:54 UTC (4,600 KB)
[v2]
Sun, 14 Jan 2024 06:32:09 UTC (4,604 KB)
[v3]
Sun, 6 Oct 2024 08:46:23 UTC (4,658 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.