Neurosymbolic AI approach to Attribution in Large Language Models

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2410.03726v1 Announce Type: new
Abstract: Attribution in large language models (LLMs) remains a significant challenge, particularly in ensuring the factual accuracy and reliability of the generated outputs. Current methods for citation or attribution, such as those employed by tools like Perplexity.ai and Bing Search-integrated LLMs, attempt to ground responses by providing real-time search results and citations. However, so far, these approaches suffer from issues such as hallucinations, biases, surface-level relevance matching, and the complexity of managing vast, unfiltered knowledge sources. While tools like Perplexity.ai dynamically integrate web-based information and citations, they often rely on inconsistent sources such as blog posts or unreliable sources, which limits their overall reliability. We present that these challenges can be mitigated by integrating Neurosymbolic AI (NesyAI), which combines the strengths of neural networks with structured symbolic reasoning. NesyAI offers transparent, interpretable, and dynamic reasoning processes, addressing the limitations of current attribution methods by incorporating structured symbolic knowledge with flexible, neural-based learning. This paper explores how NesyAI frameworks can enhance existing attribution models, offering more reliable, interpretable, and adaptable systems for LLMs.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.