T-FAKE: Synthesizing Thermal Images for Facial Landmarking

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning


Authors:Philipp Flotho (1), Moritz Piening (2), Anna Kukleva (3), Gabriele Steidl (2) ((1) Systems Neuroscience & Neurotechnology Unit, Faculty of Medicine, Saarland University & htw saar, (2) Institute of Mathematics, Technische Universität Berlin, (3) Max Planck Institute for Informatics, Saarland Informatics Campus)

View a PDF of the paper titled T-FAKE: Synthesizing Thermal Images for Facial Landmarking, by Philipp Flotho (1) and 9 other authors

View PDF
HTML (experimental)

Abstract:Facial analysis is a key component in a wide range of applications such as security, autonomous driving, entertainment, and healthcare. Despite the availability of various facial RGB datasets, the thermal modality, which plays a crucial role in life sciences, medicine, and biometrics, has been largely overlooked. To address this gap, we introduce the T-FAKE dataset, a new large-scale synthetic thermal dataset with sparse and dense landmarks. To facilitate the creation of the dataset, we propose a novel RGB2Thermal loss function, which enables the transfer of thermal style to RGB faces. By utilizing the Wasserstein distance between thermal and RGB patches and the statistical analysis of clinical temperature distributions on faces, we ensure that the generated thermal images closely resemble real samples. Using RGB2Thermal style transfer based on our RGB2Thermal loss function, we create the T-FAKE dataset, a large-scale synthetic thermal dataset of faces. Leveraging our novel T-FAKE dataset, probabilistic landmark prediction, and label adaptation networks, we demonstrate significant improvements in landmark detection methods on thermal images across different landmark conventions. Our models show excellent performance with both sparse 70-point landmarks and dense 478-point landmark annotations. Our code and models are available at this https URL.

Submission history

From: Philipp Flotho [view email]
[v1]
Tue, 27 Aug 2024 15:07:58 UTC (17,643 KB)
[v2]
Fri, 4 Oct 2024 12:20:44 UTC (34,772 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.