View a PDF of the paper titled How Reliable Are Automatic Evaluation Methods for Instruction-Tuned LLMs?, by Ehsan Doostmohammadi and 2 other authors
Abstract:Work on instruction-tuned Large Language Models (LLMs) has used automatic methods based on text overlap and LLM judgments as cost-effective alternatives to human evaluation. In this paper, we perform a meta-evaluation of such methods and assess their reliability across a broad range of tasks. In evaluating how well automatic methods align with human evaluations, correlation metrics are the most commonly employed method despite their inherent limitations when dealing with ties and different scales. To address these shortcomings, we use Pairwise Accuracy as an alternative to standard correlation measures. We observe that while automatic evaluation methods can approximate human ratings under specific conditions, their validity is highly context-dependent. Specifically, the simple ROUGE-L metric correlates very well with human ratings for short-answer English tasks but is unreliable in free-form generation tasks and cross-lingual scenarios. The effectiveness of the more advanced method of using GPT-4 as a judge diminishes significantly if reference answers are not included in the prompt, which is the scenario where this method has the potential to provide the most value compared to other metrics. Our findings enhance the understanding of how automatic methods should be applied and interpreted when developing and evaluating instruction-tuned LLMs.
Submission history
From: Ehsan Doostmohammadi [view email]
[v1]
Fri, 16 Feb 2024 15:48:33 UTC (704 KB)
[v2]
Mon, 1 Jul 2024 08:59:08 UTC (1,077 KB)
[v3]
Tue, 2 Jul 2024 11:46:09 UTC (1,077 KB)
[v4]
Wed, 2 Oct 2024 09:18:47 UTC (1,201 KB)
Source link
lol