Dynamic Pricing in Securities Lending Market: Application in Revenue Optimization for an Agent Lender Portfolio

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning


View a PDF of the paper titled Dynamic Pricing in Securities Lending Market: Application in Revenue Optimization for an Agent Lender Portfolio, by Jing Xu and 2 other authors

View PDF

Abstract:Securities lending is an important part of the financial market structure, where agent lenders help long term institutional investors to lend out their securities to short sellers in exchange for a lending fee. Agent lenders within the market seek to optimize revenue by lending out securities at the highest rate possible. Typically, this rate is set by hard-coded business rules or standard supervised machine learning models. These approaches are often difficult to scale and are not adaptive to changing market conditions. Unlike a traditional stock exchange with a centralized limit order book, the securities lending market is organized similarly to an e-commerce marketplace, where agent lenders and borrowers can transact at any agreed price in a bilateral fashion. This similarity suggests that the use of typical methods for addressing dynamic pricing problems in e-commerce could be effective in the securities lending market. We show that existing contextual bandit frameworks can be successfully utilized in the securities lending market. Using offline evaluation on real historical data, we show that the contextual bandit approach can consistently outperform typical approaches by at least 15% in terms of total revenue generated.

Submission history

From: Jing Xu [view email]
[v1]
Thu, 18 Jul 2024 17:42:37 UTC (596 KB)
[v2]
Fri, 19 Jul 2024 19:46:54 UTC (596 KB)
[v3]
Tue, 1 Oct 2024 16:33:36 UTC (610 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.