Language Models Learn to Mislead Humans via RLHF

Every’s Master Plan


View a PDF of the paper titled Language Models Learn to Mislead Humans via RLHF, by Jiaxin Wen and 8 other authors

View PDF
HTML (experimental)

Abstract:Language models (LMs) can produce errors that are hard to detect for humans, especially when the task is complex. RLHF, the most popular post-training method, may exacerbate this problem: to achieve higher rewards, LMs might get better at convincing humans that they are right even when they are wrong. We study this phenomenon under a standard RLHF pipeline, calling it “U-SOPHISTRY” since it is Unintended by model developers. Specifically, we ask time-constrained (e.g., 3-10 minutes) human subjects to evaluate the correctness of model outputs and calculate humans’ accuracy against gold labels. On a question-answering task (QuALITY) and programming task (APPS), RLHF makes LMs better at convincing our subjects but not at completing the task correctly. RLHF also makes the model harder to evaluate: our subjects’ false positive rate increases by 24.1% on QuALITY and 18.3% on APPS. Finally, we show that probing, a state-of-the-art approach for detecting Intended Sophistry (e.g. backdoored LMs), does not generalize to U-SOPHISTRY. Our results highlight an important failure mode of RLHF and call for more research in assisting humans to align them.

Submission history

From: Jiaxin Wen [view email]
[v1]
Thu, 19 Sep 2024 14:50:34 UTC (5,314 KB)
[v2]
Wed, 25 Sep 2024 00:32:31 UTC (5,314 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.