Watch Your Steps: Observable and Modular Chains of Thought

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2409.15359v1 Announce Type: new
Abstract: We propose a variant of chain of thought (CoT) prompting called Program Trace Prompting that makes explanations more observable while preserving the power, generality and flexibility of CoT. In our approach, few-shot CoT demonstrations are wrapped in a formal syntax based on Python, and each prompt: identifies and names steps; defines the input/output behavior of steps; and replaces CoT explanations of in-context examples with chains of these formalized steps on the same examples. Program Trace Prompting is applicable to many tasks, achieving strong results on the 23 diverse tasks in the BIG-Bench Hard benchmark. More importantly, by instrumenting explanations in this way, we enable new types of analysis. In particular, we identify “non-local errors” (which correspond to incorrectly learning the reasoning method illustrated in the demonstrations) as an unaddressed issue in CoT learning, and we present methods for verifying the modularity of steps in a CoT explanation.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.