From Latent to Engine Manifolds: Analyzing ImageBind’s Multimodal Embedding Space

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2409.10528v1 Announce Type: new
Abstract: This study investigates ImageBind’s ability to generate meaningful fused multimodal embeddings for online auto parts listings. We propose a simplistic embedding fusion workflow that aims to capture the overlapping information of image/text pairs, ultimately combining the semantics of a post into a joint embedding. After storing such fused embeddings in a vector database, we experiment with dimensionality reduction and provide empirical evidence to convey the semantic quality of the joint embeddings by clustering and examining the posts nearest to each cluster centroid. Additionally, our initial findings with ImageBind’s emergent zero-shot cross-modal retrieval suggest that pure audio embeddings can correlate with semantically similar marketplace listings, indicating potential avenues for future research.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.