Y-Drop: A Conductance based Dropout for fully connected layers

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2409.09088v1 Announce Type: new
Abstract: In this work, we introduce Y-Drop, a regularization method that biases the dropout algorithm towards dropping more important neurons with higher probability. The backbone of our approach is neuron conductance, an interpretable measure of neuron importance that calculates the contribution of each neuron towards the end-to-end mapping of the network. We investigate the impact of the uniform dropout selection criterion on performance by assigning higher dropout probability to the more important units. We show that forcing the network to solve the task at hand in the absence of its important units yields a strong regularization effect. Further analysis indicates that Y-Drop yields solutions where more neurons are important, i.e have high conductance, and yields robust networks. In our experiments we show that the regularization effect of Y-Drop scales better than vanilla dropout w.r.t. the architecture size and consistently yields superior performance over multiple datasets and architecture combinations, with little tuning.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.