Large Language Models’ Detection of Political Orientation in Newspapers

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2406.00018v1 Announce Type: new
Abstract: Democratic opinion-forming may be manipulated if newspapers’ alignment to political or economical orientation is ambiguous. Various methods have been developed to better understand newspapers’ positioning. Recently, the advent of Large Language Models (LLM), and particularly the pre-trained LLM chatbots like ChatGPT or Gemini, hold disruptive potential to assist researchers and citizens alike. However, little is know on whether LLM assessment is trustworthy: do single LLM agrees with experts’ assessment, and do different LLMs answer consistently with one another? In this paper, we address specifically the second challenge. We compare how four widely employed LLMs rate the positioning of newspapers, and compare if their answers align with one another. We observe that this is not the case. Over a woldwide dataset, articles in newspapers are positioned strikingly differently by single LLMs, hinting to inconsistent training or excessive randomness in the algorithms. We thus raise a warning when deciding which tools to use, and we call for better training and algorithm development, to cover such significant gap in a highly sensitive matter for democracy and societies worldwide. We also call for community engagement in benchmark evaluation, through our open initiative navai.pro.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.