Diversify-verify-adapt: Efficient and Robust Retrieval-Augmented Ambiguous Question Answering

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2409.02361v1 Announce Type: new
Abstract: The retrieval augmented generation (RAG) framework addresses an ambiguity in user queries in QA systems by retrieving passages that cover all plausible interpretations and generating comprehensive responses based on the passages. However, our preliminary studies reveal that a single retrieval process often suffers from low quality results, as the retrieved passages frequently fail to capture all plausible interpretations. Although the iterative RAG approach has been proposed to address this problem, it comes at the cost of significantly reduced efficiency. To address these issues, we propose the diversify-verify-adapt (DIVA) framework. DIVA first diversifies the retrieved passages to encompass diverse interpretations. Subsequently, DIVA verifies the quality of the passages and adapts the most suitable approach tailored to their quality. This approach improves the QA systems accuracy and robustness by handling low quality retrieval issue in ambiguous questions, while enhancing efficiency.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.