View a PDF of the paper titled Etalon: Holistic Performance Evaluation Framework for LLM Inference Systems, by Amey Agrawal and 7 other authors
Abstract:Serving large language models (LLMs) in production can incur substantial costs, which has prompted recent advances in inference system optimizations. Today, these systems are evaluated against conventional latency and throughput metrics (eg. TTFT, TBT, Normalised Latency and TPOT). However, these metrics fail to fully capture the nuances of LLM inference, leading to an incomplete assessment of user-facing performance crucial for real-time applications such as chat and translation. In this paper, we first identify the pitfalls of current performance metrics in evaluating LLM inference systems. We then propose Etalon, a comprehensive performance evaluation framework that includes fluidity-index — a novel metric designed to reflect the intricacies of the LLM inference process and its impact on real-time user experience. Finally, we evaluate various existing open-source platforms and model-as-a-service offerings using Etalon, discussing their strengths and weaknesses. Etalon is available at this https URL.
Submission history
From: Amey Agrawal [view email]
[v1]
Tue, 9 Jul 2024 16:13:26 UTC (360 KB)
[v2]
Fri, 30 Aug 2024 01:19:42 UTC (360 KB)
Source link
lol