arXiv:2408.11280v1 Announce Type: new
Abstract: Semi-supervised semantic segmentation, which efficiently addresses the limitation of acquiring dense annotations, is essential for 3D scene understanding. Most methods leverage the teacher model to generate pseudo labels, and then guide the learning of the student model on unlabeled scenes. However, they focus only on points with pseudo labels while directly overlooking points without pseudo labels, namely intra-scene inconsistency, leading to semantic ambiguity. Moreover, inter-scene correlation between labeled and unlabeled scenes contribute to transferring rich annotation information, yet this has not been explored for the semi-supervised tasks. To address these two problems, we propose to explore scene coherence for semi-supervised 3D semantic segmentation, dubbed CoScene. Inspired by the unstructured and unordered nature of the point clouds, our CoScene adopts the straightforward point erasure strategy to ensure the intra-scene consistency. Moreover, patch-based data augmentation is proposed to enhance the inter-scene information transfer between labeled and unlabeled scenes at both scene and instance levels. Extensive experimental results on SemanticKITTI and nuScenes show that our approach outperforms existing methods.
Source link
lol