Ensemble architecture in polyp segmentation

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2408.07262v1 Announce Type: new
Abstract: In this research, we revisit the architecture of semantic segmentation and evaluate the models excelling in polyp segmentation. We introduce an integrated framework that harnesses the advantages of different models to attain an optimal outcome. More specifically, we fuse the learned features from convolutional and transformer models for prediction, and we view this approach as an ensemble technique to enhance model performance. Our experiments on polyp segmentation reveal that the proposed architecture surpasses other top models, exhibiting improved learning capacity and resilience. The code is available at https://github.com/HuangDLab/EnFormer.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.