Enhancing Autonomous Vehicle Perception in Adverse Weather through Image Augmentation during Semantic Segmentation Training

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2408.07239v1 Announce Type: new
Abstract: Robust perception is crucial in autonomous vehicle navigation and localization. Visual processing tasks, like semantic segmentation, should work in varying weather conditions and during different times of day. Semantic segmentation is where each pixel is assigned a class, which is useful for locating overall features (1). Training a segmentation model requires large amounts of data, and the labeling process for segmentation data is especially tedious. Additionally, many large datasets include only images taken in clear weather. This is a problem because training a model exclusively on clear weather data hinders performance in adverse weather conditions like fog or rain. We hypothesize that given a dataset of only clear days images, applying image augmentation (such as random rain, fog, and brightness) during training allows for domain adaptation to diverse weather conditions. We used CARLA, a 3D realistic autonomous vehicle simulator, to collect 1200 images in clear weather composed of 29 classes from 10 different towns (2). We also collected 1200 images of random weather effects. We trained encoder-decoder UNet models to perform semantic segmentation. Applying augmentations significantly improved segmentation under weathered night conditions (p < 0.001). However, models trained on weather data have significantly lower losses than those trained on augmented data in all conditions except for clear days. This shows there is room for improvement in the domain adaptation approach. Future work should test more types of augmentations and also use real-life images instead of CARLA. Ideally, the augmented model meets or exceeds the performance of the weather model.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.