A Review of Pseudo-Labeling for Computer Vision

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2408.07221v1 Announce Type: new
Abstract: Deep neural models have achieved state of the art performance on a wide range of problems in computer science, especially in computer vision. However, deep neural networks often require large datasets of labeled samples to generalize effectively, and an important area of active research is semi-supervised learning, which attempts to instead utilize large quantities of (easily acquired) unlabeled samples. One family of methods in this space is pseudo-labeling, a class of algorithms that use model outputs to assign labels to unlabeled samples which are then used as labeled samples during training. Such assigned labels, called pseudo-labels, are most commonly associated with the field of semi-supervised learning. In this work we explore a broader interpretation of pseudo-labels within both self-supervised and unsupervised methods. By drawing the connection between these areas we identify new directions when advancements in one area would likely benefit others, such as curriculum learning and self-supervised regularization.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.