PaveCap: The First Multimodal Framework for Comprehensive Pavement Condition Assessment with Dense Captioning and PCI Estimation

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning


[Submitted on 7 Aug 2024]

View a PDF of the paper titled PaveCap: The First Multimodal Framework for Comprehensive Pavement Condition Assessment with Dense Captioning and PCI Estimation, by Blessing Agyei Kyem and 3 other authors

View PDF

Abstract:This research introduces the first multimodal approach for pavement condition assessment, providing both quantitative Pavement Condition Index (PCI) predictions and qualitative descriptions. We introduce PaveCap, a novel framework for automated pavement condition assessment. The framework consists of two main parts: a Single-Shot PCI Estimation Network and a Dense Captioning Network. The PCI Estimation Network uses YOLOv8 for object detection, the Segment Anything Model (SAM) for zero-shot segmentation, and a four-layer convolutional neural network to predict PCI. The Dense Captioning Network uses a YOLOv8 backbone, a Transformer encoder-decoder architecture, and a convolutional feed-forward module to generate detailed descriptions of pavement conditions. To train and evaluate these networks, we developed a pavement dataset with bounding box annotations, textual annotations, and PCI values. The results of our PCI Estimation Network showed a strong positive correlation (0.70) between predicted and actual PCIs, demonstrating its effectiveness in automating condition assessment. Also, the Dense Captioning Network produced accurate pavement condition descriptions, evidenced by high BLEU (0.7445), GLEU (0.5893), and METEOR (0.7252) scores. Additionally, the dense captioning model handled complex scenarios well, even correcting some errors in the ground truth data. The framework developed here can greatly improve infrastructure management and decision18 making in pavement maintenance.

Submission history

From: Blessing Agyei Kyem [view email]
[v1]
Wed, 7 Aug 2024 22:23:13 UTC (2,020 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.