LAMPO: Large Language Models as Preference Machines for Few-shot Ordinal Classification

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2408.03359v1 Announce Type: new
Abstract: We introduce LAMPO, a novel paradigm that leverages Large Language Models (LLMs) for solving few-shot multi-class ordinal classification tasks. Unlike conventional methods, which concatenate all demonstration examples with the test instance and prompt LLMs to produce the pointwise prediction, our framework uses the LLM as a preference machine that makes a relative comparative decision between the test instance and each demonstration. A self-supervised method is then introduced to aggregate these binary comparisons into the final ordinal decision. LAMPO addresses several limitations inherent in previous methods, including context length constraints, ordering biases, and challenges associated with absolute point-wise estimation. Extensive experiments on seven public datasets demonstrate LAMPO’s remarkably competitive performance across a diverse spectrum of applications (e.g., movie review analysis and hate speech detection). Notably, in certain applications, the improvement can be substantial, exceeding 20% in an absolute term. Moreover, we believe LAMPO represents an interesting addition to the non-parametric application layered on top of LLMs, as it supports black-box LLMs without necessitating the outputting of LLM’s internal states (e.g., embeddings), as seen in previous approaches.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.