High Performance Im2win and Direct Convolutions using Three Tensor Layouts on SIMD Architectures

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2408.00278v1 Announce Type: new
Abstract: Convolution is the core component within deep neural networks and it is computationally intensive and time consuming. Tensor data layouts significantly impact convolution operations in terms of memory access and computational efficiency. Yet, there is still a lack of comprehensive performance characterization on data layouts on SIMD architectures concerning convolution methods. This paper proposes three novel data layouts for im2win convolution: NHWC, CHWN, and CHWN8, and introduces a set of general optimization techniques for both direct and im2win convolutions. We compare the optimized im2win convolution with the direct convolution and PyTorch’s im2col-based convolution across the aforementioned layouts on SIMD machines. The experiments demonstrated that the im2win convolution with the new NHWC layout achieved up to 355% performance speedup over NCHW layout. Our optimizations also significantly improve the performance of both im2win and direct convolutions. Our optimized im2win and direct convolutions achieved up to 95% and 94% of machine’s theoretical peak performance, respectively.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.