arXiv:2407.21136v1 Announce Type: new
Abstract: Whole-body multi-modal motion generation, controlled by text, speech, or music, has numerous applications including video generation and character animation. However, employing a unified model to accomplish various generation tasks with different condition modalities presents two main challenges: motion distribution drifts across different generation scenarios and the complex optimization of mixed conditions with varying granularity. Furthermore, inconsistent motion formats in existing datasets further hinder effective multi-modal motion generation. In this paper, we propose ControlMM, a unified framework to Control whole-body Multi-modal Motion generation in a plug-and-play manner. To effectively learn and transfer motion knowledge across different motion distributions, we propose ControlMM-Attn, for parallel modeling of static and dynamic human topology graphs. To handle conditions with varying granularity, ControlMM employs a coarse-to-fine training strategy, including stage-1 text-to-motion pre-training for semantic generation and stage-2 multi-modal control adaptation for conditions of varying low-level granularity. To address existing benchmarks’ varying motion format limitations, we introduce ControlMM-Bench, the first publicly available multi-modal whole-body human motion generation benchmark based on the unified whole-body SMPL-X format. Extensive experiments show that ControlMM achieves state-of-the-art performance across various standard motion generation tasks. Our website is at https://yxbian23.github.io/ControlMM.
Source link
lol