[Submitted on 24 Jul 2024]
View a PDF of the paper titled Improving ICD coding using Chapter based Named Entities and Attentional Models, by Abhijith R. Beeravolu and 3 other authors
Abstract:Recent advancements in natural language processing (NLP) have led to automation in various domains. However, clinical NLP often relies on benchmark datasets that may not reflect real-world scenarios accurately. Automatic ICD coding, a vital NLP task, typically uses outdated and imbalanced datasets like MIMIC-III, with existing methods yielding micro-averaged F1 scores between 0.4 and 0.7 due to many false positives. Our research introduces an enhanced approach to ICD coding that improves F1 scores by using chapter-based named entities and attentional models. This method categorizes discharge summaries into ICD-9 Chapters and develops attentional models with chapter-specific data, eliminating the need to consider external data for code identification. For categorization, we use Chapter-IV to de-bias and influence key entities and weights without neural networks, creating accurate thresholds and providing interpretability for human validation. Post-validation, we develop attentional models for three frequent and three non-frequent codes from Chapter-IV using Bidirectional-Gated Recurrent Units (GRUs) with Attention and Transformer with Multi-head Attention architectures. The average Micro-F1 scores of 0.79 and 0.81 from these models demonstrate significant performance improvements in ICD coding.
Submission history
From: Abhijith Beeravolu Reddy [view email]
[v1]
Wed, 24 Jul 2024 12:34:23 UTC (1,349 KB)
Source link
lol