Pavement Fatigue Crack Detection and Severity Classification Based on Convolutional Neural Network

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2407.16021v1 Announce Type: new
Abstract: Due to the varying intensity of pavement cracks, the complexity of topological structure, and the noise of texture background, image classification for asphalt pavement cracking has proven to be a challenging problem. Fatigue cracking, also known as alligator cracking, is one of the common distresses of asphalt pavement. It is thus important to detect and monitor the condition of alligator cracking on roadway pavements. Most research in this area has typically focused on pixel-level detection of cracking using limited datasets. A novel deep convolutional neural network that can achieve two objectives is proposed. The first objective of the proposed neural network is to classify presence of fatigue cracking based on pavement surface images. The second objective is to classify the fatigue cracking severity level based on the Distress Identification Manual (DIM) standard. In this paper, a databank of 4484 high-resolution pavement surface images is established in which images are taken locally in the Town of Blacksburg, Virginia, USA. In the data pre-preparation, over 4000 images are labeled into 4 categories manually according to DIM standards. A four-layer convolutional neural network model is then built to achieve the goal of classification of images by pavement crack severity category. The trained model reached the highest accuracy among all existing methods. After only 30 epochs of training, the model achieved a crack existence classification accuracy of 96.23% and a severity level classification accuracy of 96.74%. After 20 epochs of training, the model achieved a pavement marking presence classification accuracy of 97.64%.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.