CrowdMAC: Masked Crowd Density Completion for Robust Crowd Density Forecasting

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2407.14725v1 Announce Type: new
Abstract: A crowd density forecasting task aims to predict how the crowd density map will change in the future from observed past crowd density maps. However, the past crowd density maps are often incomplete due to the miss-detection of pedestrians, and it is crucial to develop a robust crowd density forecasting model against the miss-detection. This paper presents a MAsked crowd density Completion framework for crowd density forecasting (CrowdMAC), which is simultaneously trained to forecast future crowd density maps from partially masked past crowd density maps (i.e., forecasting maps from past maps with miss-detection) while reconstructing the masked observation maps (i.e., imputing past maps with miss-detection). Additionally, we propose Temporal-Density-aware Masking (TDM), which non-uniformly masks tokens in the observed crowd density map, considering the sparsity of the crowd density maps and the informativeness of the subsequent frames for the forecasting task. Moreover, we introduce multi-task masking to enhance training efficiency. In the experiments, CrowdMAC achieves state-of-the-art performance on seven large-scale datasets, including SDD, ETH-UCY, inD, JRDB, VSCrowd, FDST, and croHD. We also demonstrate the robustness of the proposed method against both synthetic and realistic miss-detections.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.