A Comparative Study of Transfer Learning for Emotion Recognition using CNN and Modified VGG16 Models

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2407.14576v1 Announce Type: new
Abstract: Emotion recognition is a critical aspect of human interaction. This topic garnered significant attention in the field of artificial intelligence. In this study, we investigate the performance of convolutional neural network (CNN) and Modified VGG16 models for emotion recognition tasks across two datasets: FER2013 and AffectNet. Our aim is to measure the effectiveness of these models in identifying emotions and their ability to generalize to different and broader datasets. Our findings reveal that both models achieve reasonable performance on the FER2013 dataset, with the Modified VGG16 model demonstrating slightly increased accuracy. When evaluated on the Affect-Net dataset, performance declines for both models, with the Modified VGG16 model continuing to outperform the CNN. Our study emphasizes the importance of dataset diversity in emotion recognition and discusses open problems and future research directions, including the exploration of multi-modal approaches and the development of more comprehensive datasets.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.