Towards Optimal Trade-offs in Knowledge Distillation for CNNs and Vision Transformers at the Edge

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2407.12808v1 Announce Type: new
Abstract: This paper discusses four facets of the Knowledge Distillation (KD) process for Convolutional Neural Networks (CNNs) and Vision Transformer (ViT) architectures, particularly when executed on edge devices with constrained processing capabilities. First, we conduct a comparative analysis of the KD process between CNNs and ViT architectures, aiming to elucidate the feasibility and efficacy of employing different architectural configurations for the teacher and student, while assessing their performance and efficiency. Second, we explore the impact of varying the size of the student model on accuracy and inference speed, while maintaining a constant KD duration. Third, we examine the effects of employing higher resolution images on the accuracy, memory footprint and computational workload. Last, we examine the performance improvements obtained by fine-tuning the student model after KD to specific downstream tasks. Through empirical evaluations and analyses, this research provides AI practitioners with insights into optimal strategies for maximizing the effectiveness of the KD process on edge devices.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.