SignSpeak: Open-Source Time Series Classification for ASL Translation

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2407.12020v1 Announce Type: new
Abstract: The lack of fluency in sign language remains a barrier to seamless communication for hearing and speech-impaired communities. In this work, we propose a low-cost, real-time ASL-to-speech translation glove and an exhaustive training dataset of sign language patterns. We then benchmarked this dataset with supervised learning models, such as LSTMs, GRUs and Transformers, where our best model achieved 92% accuracy. The SignSpeak dataset has 7200 samples encompassing 36 classes (A-Z, 1-10) and aims to capture realistic signing patterns by using five low-cost flex sensors to measure finger positions at each time step at 36 Hz. Our open-source dataset, models and glove designs, provide an accurate and efficient ASL translator while maintaining cost-effectiveness, establishing a framework for future work to build on.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.