Co-Designing Binarized Transformer and Hardware Accelerator for Efficient End-to-End Edge Deployment

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2407.12070v1 Announce Type: new
Abstract: Transformer models have revolutionized AI tasks, but their large size hinders real-world deployment on resource-constrained and latency-critical edge devices. While binarized Transformers offer a promising solution by significantly reducing model size, existing approaches suffer from algorithm-hardware mismatches with limited co-design exploration, leading to suboptimal performance on edge devices. Hence, we propose a co-design method for efficient end-to-end edge deployment of Transformers from three aspects: algorithm, hardware, and joint optimization. First, we propose BMT, a novel hardware-friendly binarized Transformer with optimized quantization methods and components, and we further enhance its model accuracy by leveraging the weighted ternary weight splitting training technique. Second, we develop a streaming processor mixed binarized Transformer accelerator, namely BAT, which is equipped with specialized units and scheduling pipelines for efficient inference of binarized Transformers. Finally, we co-optimize the algorithm and hardware through a design space exploration approach to achieve a global trade-off between accuracy, latency, and robustness for real-world deployments. Experimental results show our co-design achieves up to 2.14-49.37x throughput gains and 3.72-88.53x better energy efficiency over state-of-the-art Transformer accelerators, enabling efficient end-to-end edge deployment.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.