Comprehensive Performance Evaluation of YOLOv10, YOLOv9 and YOLOv8 on Detecting and Counting Fruitlet in Complex Orchard Environments

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2407.12040v1 Announce Type: new
Abstract: This study performed an extensive evaluation of the performances of all configurations of YOLOv8, YOLOv9, and YOLOv10 object detection algorithms for fruitlet (of green fruit) detection in commercial orchards. Additionally, this research performed and validated in-field counting of fruitlets using an iPhone and machine vision sensors in 5 different apple varieties (Scifresh, Scilate, Honeycrisp, Cosmic crisp & Golden delicious). This comprehensive investigation of total 17 different configurations (5 for YOLOv8, 6 for YOLOv9 and 6 for YOLOv10) revealed that YOLOv9 outperforms YOLOv10 and YOLOv8 in terms of mAP@50, while YOLOv10x outperformed all 17 configurations tested in terms of precision and recall. Specifically, YOLOv9 Gelan-e achieved the highest mAP@50 of 0.935, outperforming YOLOv10n’s 0.921 and YOLOv8s’s 0.924. In terms of precision, YOLOv10x achieved the highest precision of 0.908, indicating superior object identification accuracy compared to other configurations tested (e.g. YOLOv9 Gelan-c with a precision of 0.903 and YOLOv8m with 0.897. In terms of recall, YOLOv10s achieved the highest in its series (0.872), while YOLOv9 Gelan m performed the best among YOLOv9 configurations (0.899), and YOLOv8n performed the best among the YOLOv8 configurations (0.883). Meanwhile, three configurations of YOLOv10: YOLOv10b, YOLOv10l, and YOLOv10x achieved superior post-processing speeds of 1.5 milliseconds, outperforming all other configurations within the YOLOv9 and YOLOv8 families. Specifically, YOLOv9 Gelan-e recorded a post-processing speed of 1.9 milliseconds, and YOLOv8m achieved 2.1 milliseconds. Furthermore, YOLOv8n exhibited the highest inference speed among all configurations tested, achieving a processing time of 4.1 milliseconds while YOLOv9 Gelan-t and YOLOv10n also demonstrated comparatively slower inference speeds of 9.3 ms and 5.5 ms, respectively.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.