High-Throughput Phenotyping using Computer Vision and Machine Learning

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning


[Submitted on 8 Jul 2024]

View a PDF of the paper titled High-Throughput Phenotyping using Computer Vision and Machine Learning, by Vivaan Singhvi and 4 other authors

View PDF
HTML (experimental)

Abstract:High-throughput phenotyping refers to the non-destructive and efficient evaluation of plant phenotypes. In recent years, it has been coupled with machine learning in order to improve the process of phenotyping plants by increasing efficiency in handling large datasets and developing methods for the extraction of specific traits. Previous studies have developed methods to advance these challenges through the application of deep neural networks in tandem with automated cameras; however, the datasets being studied often excluded physical labels. In this study, we used a dataset provided by Oak Ridge National Laboratory with 1,672 images of Populus Trichocarpa with white labels displaying treatment (control or drought), block, row, position, and genotype. Optical character recognition (OCR) was used to read these labels on the plants, image segmentation techniques in conjunction with machine learning algorithms were used for morphological classifications, machine learning models were used to predict treatment based on those classifications, and analyzed encoded EXIF tags were used for the purpose of finding leaf size and correlations between phenotypes. We found that our OCR model had an accuracy of 94.31% for non-null text extractions, allowing for the information to be accurately placed in a spreadsheet. Our classification models identified leaf shape, color, and level of brown splotches with an average accuracy of 62.82%, and plant treatment with an accuracy of 60.08%. Finally, we identified a few crucial pieces of information absent from the EXIF tags that prevented the assessment of the leaf size. There was also missing information that prevented the assessment of correlations between phenotypes and conditions. However, future studies could improve upon this to allow for the assessment of these features.

Submission history

From: Langalibalele Lunga [view email]
[v1]
Mon, 8 Jul 2024 19:46:31 UTC (6,576 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.