Context Propagation from Proposals for Semantic Video Object Segmentation

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2407.06247v1 Announce Type: new
Abstract: In this paper, we propose a novel approach to learning semantic contextual relationships in videos for semantic object segmentation. Our algorithm derives the semantic contexts from video object proposals which encode the key evolution of objects and the relationship among objects over the spatio-temporal domain. This semantic contexts are propagated across the video to estimate the pairwise contexts between all pairs of local superpixels which are integrated into a conditional random field in the form of pairwise potentials and infers the per-superpixel semantic labels. The experiments demonstrate that our contexts learning and propagation model effectively improves the robustness of resolving visual ambiguities in semantic video object segmentation compared with the state-of-the-art methods.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.