arXiv:2407.03518v1 Announce Type: new
Abstract: For large language models (LLMs) like NLLB and GPT, translating idioms remains a challenge. Our goal is to enhance translation fidelity by improving LLM processing of idiomatic language while preserving the original linguistic style. This has a significant social impact, as it preserves cultural nuances and ensures translated texts retain their intent and emotional resonance, fostering better cross-cultural communication. Previous work has utilized knowledge bases like IdiomKB by providing the LLM with the meaning of an idiom to use in translation. Although this method yielded better results than a direct translation, it is still limited in its ability to preserve idiomatic writing style across languages. In this research, we expand upon the knowledge base to find corresponding idioms in the target language. Our research performs translations using two methods: The first method employs the SentenceTransformers model to semantically generate cosine similarity scores between the meanings of the original and target language idioms, selecting the best idiom (Cosine Similarity method). The second method uses an LLM to find a corresponding idiom in the target language for use in the translation (LLM-generated idiom method). As a baseline, we performed a direct translation without providing additional information. Human evaluations on the English -> Chinese, and Chinese -> English show the Cosine Similarity Lookup method out-performed others in all GPT4o translations. To further build upon IdiomKB, we developed a low-resource Urdu dataset containing Urdu idioms and their translations. Despite dataset limitations, the Cosine Similarity Lookup method shows promise, potentially overcoming language barriers and enabling the exploration of diverse literary works in Chinese and Urdu. For access to the code and replication of our experiments, please visit (https://github.com/ANON13222/ITR).
Source link
lol